Advanced Channel Measurements and Channel Modeling for Millimeter-Wave Mobile Communication

Wilhelm Keusgen

International Workshop on Emerging Technologies for 5G Wireless Cellular Networks December 8th 2014

Disruptive Technologies for 5G

Wireless Communications and Networks

Five Disruptive Technology Directions for 5G, IEEE Communications Magazine • February 2014

Wilhelm Wilhelenge weusgen

Millimeter-Waves in 5G

Wireless Communications and Networks

mm-Wave for Mobile Communication

Wireless Communications and Networks

- Multiple candidate bands
 - 28 GHz, 39 GHz
 - 60 GHz (unlicensed)
 - 70/80 GHz (unlicensed/ light licensed)
- Challenging propagation conditions
 - High pathloss
 - Quasi optical transmission.
 - No comprehensive channel model yet

METIS Spectrum Band Asessments

Wireless Communications and Networks

We know: Higher path loss

- Conventional high-gain antennas for fixed links
- Steerable antennas for mobile applications

We do not know: Temporal, spatial, and angular structure, obstructed LOS

- Need of comprehensive 3D channel model for link level and system level simulations
- Current mm-Wave channel models neither directly applicable to outdoor nor suited for system-level evaluations in mobile networks
- Channel models for cellular communications (3GPP SCM, WINNER, ITU-R M.2135, COST 2100) do not support higher bands

HHI Measurement Campaigns in 2014

- Street canyon measurements at 60 GHz in busy urban access scenario: temporal characteristics and time variance
- Measurement campaign on former **airport**: impact of ground reflections, distances up to 1000 m (60 GHz)
- Dual frequency measurements at 10 and 60 GHz (fully simultaneous) in urban access scenario: frequency dependence of channel characteristics for LOS and NLOS
- Large adaptive antenna array measurements for backhaul and access at 60 GHz: technology demonstration, system trial, and real time spatial resolved channel characteristics

Omnidirectional measurements

- Capture all relevant multipaths and time-variance of the channel/environment
- Evaluations based on "real" omnidirectional data without the need for synthetic superposition of directional data
- Directional information can be obtained by processing of virtual array data and accompanying ray tracing simulations

Directional measurements with fixed beam

- Investigation of directional channels for backhaul applications
- Improvement of link budget for measurements
- Use of application-oriented antennas for measurements to obtain realistic temporal channel characteristics

Adaptive array measurements

- Quasi instantaneous spatial information (in slowly varying scenarios) for a certain sector
- Evaluation based on "real" antenna data with impairments

Wireless Communications and Networks

Channel sounding parameters

Number of Antennas	2 Tx, 2 Rx	
Carrier frequency	Variable, e.g. 60 GHz	
Bandwidth	250 MHz	
Output power	15 dBm	
Snapshot measurement duration	65.5 µs	
Separation of snapshots	Variable, typ. 800 µs (0.4 mm @ .5m/s)	
Antennas	omni, 2 dBi, vertical pol., 20 dBi horn, Adaptive Antenna Array	
Max. instantaneous dynamic range	45 dB	
Number of snapshots per set	Max. 62,500	

- Full information on temporal characteristics of the channel available
- Channel impulse response: absolute delay, magnitude and phase of arriving multipath components

Measurement campaign in Berlin, Germany

- Small cell urban access channel
- Potsdamer Straße (street canyon) & Leipziger Platz (city square)
- TX: "small cell base station", RX: "mobile"
- TX-RX distance: 0–50 m
- 12 TX locations for street canyon
- 3.75 million snapshots with mobile RX (0.5 m/s)
- 3.25 million snapshots with static RX

Street Canyon Scenario

Wireless Communications and Networks

Potsdamer Str.

- Modern office buildings
- Significant reflections to be expected from flat surfaces
- Street width: 52 m

Typical Result of Mobile Measurement

Wireless Communications and Networks

- TX-RX distance: 25– 0 m, full measurement run with 62,500 CIRs
- Averaging over 10 cm segments (250 CIRs) to obtain APDP
- Significant multipath contributions (MPC)
- Channel length: several hundred ns
- Large-scale fading of MPCs due to RX movement and timevariant environment
- Also Fading in first MPC ("LOS component)

Wireless Communications and Networks

- TX & RX at static positions
- TX-RX distance: 25 meter

Wireless Communications and Networks

Wireless Communications and Networks

- TX & RX at static positions
- TX-RX distance: 25 meter

Wireless Communications and Networks

- TX & RX at static positions
- TX-RX distance: 25 meter

Wireless Communications and Networks

- TX & RX at static positions
- TX-RX distance: 25 meter

Wireless Communications and Networks

- TX & RX at static positions
- TX-RX distance: 25 meter

Wireless Communications and Networks

- TX & RX at static positions
- TX-RX distance: 25 meter

Wireless Communications and Networks

- TX & RX at static positions
- TX-RX distance: 25 meter

Wireless Communications and Networks

- TX & RX at static positions
- TX-RX distance: 25 meter

Path Loss Parameter Extraction (1)

Wireless Communications and Networks

- Least squares fit of LOSdominant measurement data comprising more than 2 million channel snapshots
- Estimated Parameters:

- Problem: bandwidthdependence of results, significant deviation of σ
- σ does not reflect shadow fading term only, but includes small-scale effects
- Averaging (or statistical preprocessing) obligatory prior to extraction of largescale parameters!

Path Loss Parameter Extraction (2)

Wireless Communications and Networks

- Equivalent evaluation, but with preceding spatial averaging over 3125 adjacent snapshots (1.25 m segments)
- Estimated parameters become practically independent of bandwidth:

	PL (5 m)	n	σ
NB	82.1 dB	2.09	2.05
WB	81.9 dB	2.13	2.04

- Appropriate averaging yields proper and comparable results
- Numerous measurement samples within each averaging bin/window required!

Individual Path Loss per MPC

Wireless Communications and Networks

- Selection of five strongest multipath components (MPCs) in each APDP
- Calculation of path loss for each MPC individually
- Linear regression according to logdistance law
- Decreasing PL exponent for MPCs: from 2.4 down to 1.2
- Significant exploitable multipath power
- Averaging 10 cm

Multi-Band 10 GHz, 60 GHz, LOS/NLOS

Wireless Communications and Networks

Multi-Band, NLOS Results

Wireless Communications and Networks

Investigation of Two-Way Propagation

Wireless Communications and Networks

Former military airport in Gatow / Berlin

- Objectives: investigate ground reflection for different surfaces, impact of small houses, near LOS conditions
- Setup: HIRATE channel sounder as used for the previous measurements, but reference cable replaced by two rubidium clocks
- Tx and Rx placed on two pickup trucks
- Tx height: 4 m, Rx height: 3–5 m, antennas: standard gain horns with 20 dBi
- Distances: 20 m to 1000 m
- Types of measurements:
 - Two polarizations
 - Moving Rx (1.88 m/s, 6.75 km/h)
 - Height variation of Rx antenna (3–5 m)
- 88 measurement runs for airport (5.3 million CIRs)

Backhaul Measurement Setup

Wireless Communications and Networks

Measurement on Runway

Wireless Communications and Networks

Moving Rx (100–160 m) on Runway

Wireless Communications and Networks

Height Variation Rx (220 m) on Runway

Wireless Communications and Networks

Airport: Received Power vs. Distance

Wireless Communications and Networks

- Normalized received power from 40 to 1000 m on tarmac runway for vertical polarization
- Combination of 16 subsequent measurement runs, 60 m each
- Distinct fading structure can be observed: superposition of direct (LOS) and groundreflected path
- Some artifacts at the seams due to repositioning of Tx

Two-ray Propagation Model

Wireless Communications and Networks

- Two-ray propagation model taking into account Fresnel reflection and oxygen absorption
- Good agreement of fading structure, differences to be investigated in more detail
- Oxygen absorption rate of 14 dB/km estimated: in line with Liebe's MPM model (13.9 dB/km)
- Increase of bandwidth helps to reduce fading effects, however: still significant fading (10 dB) for larger distances despite 2 GHz bandwidth and directional antennas!

Adaptive Array Measurements @ Intel

- First use of large adaptive antenna arrays for realtime channel measurements
- Modular Antenna Array (MAA) compromising 8 submodules with 2 x 8 antennas each (128 active antenna elements)
- Demonstration of Intel's adaptive antenna technology
- Insight into wireless channels incorporating realistic antenna effects
- Real-time spatial resolved channel measurements including full scans (beam-switching in millisecond range)

(The measurements were also supported by R&S)

Measurement Setup

- MAA at both sides
- Simultaneous measurement with omni-antenna at receiver side (SIMO)
- 90° scan angle in azimuth and 30° scan angle in elevation
- 5° resolution, 17 x 9 beams
- 140 measurements sets each with 62,500 impulse responses: approx. 8.8M in total

NLOS Backhaul

Wireless Communications and Networks

- Street level backhaul in street canyon: 3 m antenna height, distances up to 125 m, LOS and NLOS measurements
- Exhaustive beam search with full scan at the transmitter and azimuth scan at the receiver (2257 beam combinations)

Preliminary Results

Map of total received power per beam

- Several useful beam combinations could be found
- Influence of multiple reflections and antenna side-lobes
- NLOS backhaul with MAA is feasible
- Further investigations on temporal characteristics needed

User Access

- User Access on plaza: 3 m antenna height at base station, 1.2 m antenna height at terminal, measured distances up to 60 m on continuous grid
- Full scan at the transmitter and omni-receiver (133 beam combinations)

Preliminary results

Wireless Communications and Networks

Total received power per Tx beam (LOS) Total received power per Tx beam (OLOS)

- Multipath propagation could be spatially resolved
- Obstruction (OLOS, human body shadowing) has some impact
- In OLOS communication still feasible (appr. 15 dB loss)

Quasi Deterministic Channel Model

Methodology

D-rays:

- Direct ray and strong reflections (e.g. ground reflection)
 - Given by free space loss, reflection coefficient, polarization, and mobility effects (Doppler shift and user displacement)

R-rays:

- Far-away reflections
- Defined by PDP, angular and polarization characteristics according to scenario-specific probability distributions

Channel Impulse Response Structure

Wireless Communications and Networks

Conclusions

- Measurement campaigns on mm-Wave outdoor channels for access and backhaul scenarios, for 5G system evaluation
- Omnidirectional, directional and adaptive array antennas
- Full information on temporal characteristics through real-time measurements
- Spatial information through array antenna measurements