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Green Touch Initiative 



J. Hoydis, S. ten Brink, M. Debbah, “Massive MIMO in the UL/DL of Cellular 

Networks: How Many Antennas Do We Need?,” IEEE Journal on Selected Areas 

in Communications, 2013. IEEE Leonard G. Abraham Prize 
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   5G    

 

• 1-10Gbps connections to end points in the field (i.e. not theoretical 

maximum)  

• 1 millisecond end-to-end round trip delay (latency)  

• 1000x bandwidth per unit area  

• 10-100x number of connected devices  

•  (Perception of) 99.999% availability  

• (Perception of) 100% coverage  

• 90% reduction in network energy usage  

• Up to ten year battery life for low power, machine-type devices  

 



Massive MIMO as one of the operating of 

5G 
 

E. Bjornson, L. Sanguinetti, J. Hoydis and M. Debbah, "Designing Multi-User MIMO for 

Energy Efficiency: When is Massive MIMO the Answer? », IEEE Wireless Communications 

and Networking Conference (WCNC) 2014, Istanbul, Turkey, BEST PAPER AWARD. 
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The Three Phases of Massive MIMO 

Every great scientific truth goes through three phases.  

• 1) First, people deny it.  

• 2) Second, they say it conflicts with the physics (engineering) 

principles 

• 3) Third, they say they’ve known it all along. 
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Typical Statements about Massive MIMO 

• “Massive MIMO improves spectral efficiency with orders of magnitude” 

• This sounds promising but is vague! 

• Which gains can we expect in reality? 

 

• “Massive MIMO has an order of magnitude more antennas than users” 

• This assumption reduces interference 

• But does it maximize any system performance metric? 

 

• “The pilot sequences are reused for channel estimation in every cell” 

• This is an analytically tractable assumption 

• Are there no benefits of having more pilot sequences than that? 
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Partial Answers in This Talk! 

Goal: Optimize spectral efficiency for a given number of antennas 

Variables: Number of users and pilot sequences 



Massive MIMO Transmission Protocol 

• Coherence Blocks 

• Fixed channel responses 

• Coherence time: 𝑇𝑐 s 

• Coherence bandwidth: 𝑊𝑐 Hz 

• Depends on mobility and environment 

• Block length: 𝜏𝑐  = 𝑇𝑐𝑊𝑐 symbols 

• Typically: 𝜏𝑐 ∈ [100,10000] 

 

 

• Time-Division Duplex (TDD) 

• Downlink and uplink on all frequencies 

• 𝜏𝑝 symbols/block for uplink pilots – for channel estimation 

• 𝜏𝑐 − 𝜏𝑝 symbols/block for uplink and/or downlink payload data 
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Linear or Non-linear Processing? 

• Capacity-Achieving Non-linear Processing 

• Downlink: Dirty paper coding 

• Uplink: Successive interference cancellation 
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Do we need it in 

Massive MIMO? 

Linear Processing 

Bad when 𝑀 ≈ 𝐾 

Good when 𝑀/𝐾 > 2 

Relative low complexity 

𝐾 = 20 users 

SNR = −5 dB 

i.i.d. Rayleigh 

Massive MIMO 

Uses linear processing: 

Maximum ratio (MR) 

Zero-forcing (ZF) 

MMSE 

Linear 

processing 



Channel Acquisition in Massive MIMO 

• Limited Number of Pilots: 𝜏𝑝 ≤ 𝜏𝑐 

• Must use same pilot sequence in several cells 

• Base stations cannot tell some users apart: 

Essence of pilot contamination 

 

• Coordinated Pilot Allocation 

• Allocate pilots to users to reduce contamination 

• Scalability → No signaling between BSs  

 

• Solution: Non-universal pilot reuse 

• Pilot reuse factor 𝑓 ≥ 1 

• Users per cell: 𝐾 =
𝜏𝑝

𝑓
 

• 𝒫𝑗(𝑓): Cells with same pilots as BS 𝑗 

• Higher 𝑓 → Fewer users per cell, 

          but fewer interferers in 𝒫𝑗 14 Reuse 𝑓 = 4 Reuse 𝑓 = 1 Reuse 𝑓 = 3 



Basic Spectral Efficiency Expressions (1/3) 

• System Model 

• Channel from BS 𝑗 to user 𝑚 in cell 𝑙 

                  𝒉𝑙𝑚
𝑗

∼ 𝐶𝑁 𝟎, 𝛽𝑙𝑚
𝑗
𝐈𝑀  

 

• Uplink transmit power: 𝜌𝑗𝑘
𝑢  

• Downlink transmit power: 𝜌𝑗𝑘
𝑑  

 

• Channel Estimation Quality at BS 𝑙 

    𝛾𝑙𝑚
𝑗
=

𝜌𝑙𝑚
𝑢 𝛽𝑙𝑚

𝑗
𝜏𝑝

 𝜌
𝑙′𝑚
𝑢

𝑙′∈𝒫𝑙(𝑓)
𝛽
𝑙′𝑚

𝑗
𝜏𝑝+𝜎

2
           (Note: 0 ≤ 𝛾𝑙𝑚

𝑗
≤ 1) 

• MMSE estimate distribution:  Estimate error distribution: 

          𝒉 𝑙𝑚
𝑗

∼ 𝐶𝑁 𝟎, 𝛽𝑙𝑚
𝑗
𝛾𝑙𝑚
𝑗
𝐈𝑀                    𝒆𝑙𝑚

𝑗
∼ 𝐶𝑁 𝟎, 𝛽𝑙𝑚

𝑗
(1 − 𝛾𝑙𝑚

𝑗
)𝐈𝑀  
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𝒉𝑙𝑚
𝑗

 



Basic Spectral Efficiency Expressions (2/3) 

  Stochastic uplink channel in cell 𝑗: 

𝒚𝑗 = 𝒉𝑙𝑚
𝑗
𝑠𝑙𝑚

𝑙,𝑚

+ 𝒏𝑗 

• Linear detector 𝒗𝑗𝑘 for user 𝑘 in cell 𝑗: 

𝒗𝑗𝑘
𝐻 𝒚𝑗 = 𝔼 𝒗𝑗𝑘

𝐻 𝒉 𝑗𝑘
𝑗

𝑠𝑗𝑘 + 𝒗𝑗𝑘
𝐻 𝒉𝑗𝑘

𝑗
− 𝔼 𝒗𝑗𝑘

𝐻 𝒉 𝑗𝑘
𝑗

𝑠𝑗𝑘 +  𝒗𝑗𝑘
𝐻 𝒉𝑙𝑚

𝑗
𝑠𝑙𝑚

𝑙,𝑚 ≠(𝑗,𝑘)

+ 𝒗𝑗𝑘
𝐻 𝒏𝑗 
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𝒉𝑙𝑚
𝑗

 

Recall: Spectral efficiency of AWGN channel 

𝑦 = 𝑔 ⋅ 𝑠 + 𝑛 

 

 

𝑅 = log2 1 +
𝜌 𝑔 2

𝜎2
 

Constant gain Noise: 𝐶𝑁(0, 𝜎2) 
Signal: 𝐶𝑁(0, 𝜌) 

Signal: 𝑠𝑙𝑚 ∼ 𝐶𝑁(0, 𝜌𝑙𝑚
𝑢 ) 

Noise: 𝐶𝑁(𝟎, 𝜎2𝑰) 

𝑔𝑗𝑘: Known constant gain 𝑎𝑗𝑘: Signal along unknown direction 

𝑏𝑗𝑘: Multi-user interference and noise 

Lower bound, mutual info: log2 1 +
𝜌𝑗𝑘
𝑢 𝑔𝑗𝑘

2

𝔼 𝑎𝑗𝑘
2
+𝔼 𝑏𝑗𝑘

2  



Basic Spectral Efficiency Expressions (3/3) 

• Lower Bound on Spectral Efficiency 

• Averaged over small-scale fading 

• Depends on variance 𝛽𝑙𝑚
𝑗

 

• Depends on estimation quality: 

  𝛾𝑙𝑚
𝑗
=

𝜌𝑙𝑚
𝑢 𝛽𝑙𝑚

𝑗
𝜏𝑝

 𝜌
𝑙′𝑚
𝑢

𝑙′∈𝒫𝑙(𝑓)
𝛽
𝑙′𝑚

𝑗
𝜏𝑝+𝜎

2
 

• Uplink spectral efficiency with MR, 𝒗𝑗𝑘 = 𝒉 𝑗𝑘
𝑗

, user 𝑘 in cell 𝑗: 
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Pilot overhead 
Conventional 

interference 

Pilot-contaminated 

interference 

Desired signal 

Similar expressions for downlink and with ZF processing 

Array gain 

𝛽𝑙𝑚
𝑗

 

𝑅𝑗𝑘 = 1 −
𝜏𝑝

𝜏𝑐
log2 1 +

𝑀 𝜌𝑗𝑘
𝑢  𝛽𝑗𝑘

𝑗
 𝛾𝑗𝑘

𝑗

 𝜌𝑙𝑚
𝑢  𝛽𝑙𝑚

𝑗
+𝑀 𝜌𝑙𝑘

𝑢 𝛽𝑙𝑘
𝑗

𝑙∈𝒫𝑗(𝑓) \{𝑗}
 𝛾𝑙𝑘

𝑗
𝑙,𝑚 + 𝜎2

 



Optimization of Spectral Efficiency 

• How Large Spectral Efficiency can be Achieved? 

• Problem Formulation: 

maximize
𝐾, 𝜏𝑝

       total spectral efficiency       [bit/s/Hz/cell] 

          for a given 𝑀 and 𝜏𝑐. 

 

• Issue: Hard to use previous expressions 

• Interference depends on all users’ positions!   (i.e., on all 𝛽𝑙𝑚
𝑗

) 

• We want quantitative results – averaged over user locations 

• We want to avoid non-informative Monte-Carlo simulations 

 

• Solution: Make every user “typical” 

• Same uplink SNR: Power control inversely proportional to pathloss 

• Inter-cell interference: Average over interfering user locations in other cells 
18 



Symmetric Multi-Cell Network 

• Classic Hexagonal Network 

• Infinite grid of hexagonal cells 

• 𝑀 antennas at each BS 

• 𝐾 active users in each cell 

• Same user distribution in each cell 

• Uncorrelated Rayleigh fading 

• Statistical uplink channel inversion: 𝜌𝑙𝑘
𝑢 =

𝑝

𝛽𝑙𝑘
𝑙  
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Every cell is “typical” 

Propagation Parameters 
(Average interference from cell 𝑙 to BS 𝑗) 

  Compute 𝜇𝑗𝑙
(1)

= 𝔼
𝛽𝑙𝑘
𝑗

𝛽𝑙𝑘
𝑙  and 𝜇𝑗𝑙

(2)
= 𝔼

𝛽𝑙𝑘
𝑗

𝛽𝑙𝑘
𝑙

2

 



Coordinated Precoding and Detection 

• Coordinated Multi-Point (CoMP) 

• Avoid causing strong inter-cell interference 

• Scalability → No signaling between BSs 

• Solution: Observe and react (𝑓 ≥ 1) 

• Listen to pilot signals used only in other cells  

• Utilize to suppress inter-cell interference 

• Schemes: Multi-cell ZF and multi-cell MMSE 
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Reuse 𝒇 = 𝟑  

𝒉 𝑗𝑘
𝑗

 

All estimated 
channels 

Estimation error  
covariance matrix 

MMSE precoding/detection: 

𝒗𝑙𝑘 =  𝜌𝑙𝑚
𝑢

𝑙,𝑚

𝒉 𝑙𝑚
𝑗

𝒉 𝑙𝑚
𝑗 𝐻

+ 𝑬𝑗 + 𝜎2𝑰

−1

𝒉 𝑗𝑘
𝑗

 



Uplink-Downlink Duality 

 

 

 

 

Note: Equivalence between two lower bounds – uplink bound is looser! 
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Duality Theorem 

Any set of uplink SEs is also achievable in the downlink using same sum power 

Same precoding/detection vectors, but different power allocation 



Average Spectral Efficiency per Cell (1/2) 

• Lower Bound on Average Ergodic Capacity in Cell 𝑗: 

SE𝑗 = 𝔼  SE𝑗𝑘

𝐾

𝑘=1

= 𝐾 1 −
𝜏𝑝

𝜏𝑐
𝔼 log2 1 + SINR𝑗𝑘  

≥ 𝐾 1 −
𝜏𝑝

𝜏𝑐
log2 1 +

1

𝔼 SINR𝑗𝑘
−1

 

 Noise/Transmit Power 

Every user is “typical”: 

Same for all users 

Jensen’s inequality 

Remaining expectation can be computed explicitly for: 

MR, ZF, and M-multi-cell ZF (M-ZF) 
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Average Spectral Efficiency per Cell (2/2) 

• Lower Bound on Average Ergodic Capacity in Cell 𝑗: 

SE𝑗 = 𝐾 1 −
𝜏𝑝

𝜏𝑐
log2 1 +

1

𝐼𝑗
 

 

• Interference term depends on processing: 
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Loss from pilots  “SINR” 

Noise/Transmit Power 

𝐼𝑗
MR =  𝜇𝑗𝑙

(2)
+
𝜇𝑗𝑙
(2)

− (𝜇𝑗𝑙
1
)2

𝑀
𝑙∈𝒫𝑗(𝑓)\{𝑗}

+
 𝜇𝑗𝑙

(1)
𝐾 +

𝜎2

𝑝𝑙∈ℒ

𝑀
 𝜇𝑗𝑙

(1)

𝑙∈𝒫𝑗 𝑓

+
𝜎2

𝑝𝜏𝑝
                                             

𝐼𝑗
ZF =  𝜇𝑗𝑙

(2)
+
𝜇𝑗𝑙
(2)

− (𝜇𝑗𝑙
1
)2

𝑀 − 𝐾
𝑙∈𝒫𝑗(𝑓)\{𝑗}

+
 𝜇𝑗𝑙

1
𝐾 +

𝜎2

𝑝𝑙∈ℒ

𝑀 − 𝐾
 𝜇𝑗𝑙

(1)

𝑙∈𝒫𝑗 𝑓

+
𝜎2

𝑝𝜏𝑝
−  

𝜇𝑗𝑙
1

2
𝐾

𝑀 − 𝐾
𝑙∈𝒫𝑗 𝑓

        

Interference from all cells Pilot contamination 1/(Estimation quality) Interference suppression 

Only terms that remain as 𝑀 → ∞: Finite limit on SE 



Asymptotic Limit on Spectral Efficiency 

• Lower Bound on Average Ergodic Capacity as 𝑀 → ∞: 

SE𝑗 → 𝐾 1 −
𝑓𝐾

𝜏𝑐
log2 1 +

1

  𝜇𝑗𝑙
(2)

𝑙∈𝒫𝑗 𝑓 \{𝑗}
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How Long Pilot Sequences? 

𝜏𝑝 = 𝑓𝐾∗ =
𝜏𝑐

2
 :   Spend half coherence interval on pilots! 

How Many Users to Serve? 

  Pre-log factor 𝐾 1 −
𝑓𝐾

𝜏𝑐
 is maximized by 𝐾∗ =

𝜏𝑐

2𝑓
 users 

Maximal SE:  
𝜏𝑐

4𝑓
log2 1 +

1

  𝜇𝑗𝑙
(2)

𝑙∈𝒫𝑗 𝑓 \{𝑗}

 

Try different 𝑓 and 𝒫𝑗 𝑓  to maximize the limit 



Numerical Results 

• Problem Formulation: 

maximize
𝐾, 𝜏𝑝

       total spectral efficiency       [bit/s/Hz/cell] 

     for a given 𝑀 and 𝜏𝑐 . 

• Use average spectral efficiency expressions 

• Compute average interference 𝜇𝑗𝑙
(1)

 and 𝜇𝑗𝑙
(2)

 (a few minutes) 

• Compute for different 𝐾 and 𝑓 and pick maximum (< 1 minute) 

25 
Reuse 𝒇 = 𝟏 Reuse 𝒇 = 𝟑  Reuse 𝒇 = 𝟒 

Assumptions 

Pathloss exponent: 3.7 

Coherence: 𝜏𝑐 = 400 

Rayleigh fading 

SNR 5 dB 



Asymptotic Behavior: Mean-Case Interference 
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Observations 

• Uniform user distributions 

• Asymptotic limits not reached 

• Reuse factor 𝑓 = 3 is desired 

• 𝐾 is different for each scheme 

• Small difference between 

optimized schemes 

• Coordinated beamforming: 

Better at very large 𝑀 



Asymptotic Behavior: Worst-Case Interference 
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Observations 

• Interferers at worst positions 

• Asymptotic limits not reached 

• Reuse factor 𝑓 = 4 is desired 

• 𝐾 is different for each scheme 

• Coordinated beamforming: 

Brings large gains for all 𝑀 



Flexible Number of Users 

• SE w.r.t. number of users (𝑀 = 200 antennas) 

• Mean-case interference 

• Optimized reuse factors 

• Equal SNR (5 dB) 
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Observations 

Stable SE for 𝐾 >  10:  

Trivial scheduling:  

Admit everyone 

 

M-ZF, ZF, and MR provide 

similar per-cell performance 

 

𝑀/𝐾 < 10 is just fine! 



Spectral Efficiency per User 

• User Performance for Optimized System 

• Mean-case interference 

• Optimized reuse factors 

• Equal SNR (5 dB) 
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Observations 

User performance is modest: 

BPSK, Q-PSK, or 16-QAM 

 

Schemes for different 

purposes: 

M-ZF > ZF > MR 



Anticipated Uplink Spectral Efficiency 

30 

Assumptions 

ZF processing 

Pilot reuse: 𝑓 = 3 

Observations 

• Baseline: 2.25 bit/s/Hz/cell (IMT-Advanced) 

• Massive MIMO, 𝑀 = 100: x20 gain  (𝑀/𝐾 ≈ 6) 

• Massive MIMO, 𝑀 = 400: x50 gain  (𝑀/𝐾 ≈ 9) 

• Per scheduled user: ≈ 2.5 bit/s/Hz 

Also applicable in the downlink! 



Summary 

• Massive MIMO delivers High Spectral Efficiency 

• > 20x gains over IMT-Advanced are within reach 

• Very high spectral efficiency per cell, not per user 

• Non-universal pilot reuse (𝑓 = 3) is often preferred 

• MR, ZF, M-ZF prefer different values on 𝐾 and 𝑓 

• “An order of magnitude more antennas than users” is not needed 

 

• Asymptotic limits 

• Coherence interval (𝜏𝑐 symbols) limits multiplexing capability 

• Allocate up to 𝜏𝑐/2 symbols for pilots 

• We can handle very many users/cell – how many will there be? 
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